[image: image1.jpg]Information Society
Technologies

IST Project 20247

Resource Broker v1.3
EUROGRID
IST Project 20247

INFORMATION SOCIETY TECHNOLOGIES
(IST)
PROGRAMME

[image: image7.png]

EUROGRID

Application Testbed for European GRID Computing

Resource Broker v1.3 / University of Manchester

Installation and Configuration Guide

	Author(s)
	Institution(s)

	Donal K. Fellows
	University of Manchester

Classification:

Status:

Public

Version:
1.01

Table of Contents

iTable of Contents

11
Introduction

12
Description of Functionality

13
Software Components

24
Installing and Configuring the Client Plugin

24.1
Prerequisites

24.2
Installation

24.3
Configuration

44.4
The Brokering Process

54.4.1
Caveat 1 – Warnings when brokering jobs

54.4.2
Caveat 2 – Multiple Offers from the Same Site

64.5
Brokering Demonstrator Abstract DWDLM Jobs

65
Installing and Configuring the NJS Component

65.1
Prerequisites

75.2
Installation

75.3
Basic Configuration

85.3.1
UUDB Configuration

85.4
Configuring Advertising

95.5
Configuring Brokering of Application-Specific Jobs

105.6
Checking the Configuration

105.7
Example TurnaroundTimeScript

115.8
Example BROKER IDB Sections

126
Future Directions

136.1
Extended Expert Brokering

136.2
Resource Consumption Feedback

136.3
Self-Configuring Brokers

136.4
Brokering of Jobs Containing Multiple Tasks

136.5
Automated Offer Selection

146.6
Brokering and Service Level Agreements

146.7
Brokering with Distributed Data and Network Transfers

1 Introduction

This document describes the third version of the EUROGRID resource broker. It represents a major improvement upon the version released as Deliverable 5.2b. The remainder of this document is structured as follows: Section 2 gives an overview of the functionality provided by the Resource Broker; Section 3 describes the components associated with this deliverable, and Sections 4 and 5 describe how they should be installed.
2 Description of Functionality

There are two interfaces supported by NJS 4.0.2: ResourceChecker and ResourceBroker. ResourceChecker can check static requirements, like Software Resources, processor and memory requirements, as well as dynamic requirements such as current disk quotas. ResourceBroker extends this set by allowing the supply of estimates about the start and end times of the jobs. Version 1.3 of the broker always uses the ResourceBroker interface.
This version of the Broker will:

· Return QoS information, such as estimated turnaround time and cost

· Allow sites where you don’t have an account to advertise by sending you offers

· Allow the translation of application-domain resource descriptions into concrete resources through an extensible plug-in interface.
· Accept AJOs back from the client that have a quality-of-service ticket and verify that the ticket was issued by the broker.

· Allow (as part of ongoing work to coordinate with the GRIP project) the local resource checking and QoS discovery module to be replaced with others through a plug-in interface.

· Allow chaining of brokers together so that one broker may pass on requests to another, allowing for easy construction of virtual-organization-wide brokering facilities.

3 Software Components
This release of the Resource Broker includes new functionality, some of which was demonstrated at the EUROGRID Review meeting in Toulouse. This release comprises the following components:

· BrokerPlugin.jar – contains a Plugin for the Pallas UNICORE Client V4.1, based on the “Small Services Interface”. The jar file is signed by the author’s EG-CA certificate.

· UoMBroker.jar – contains the code that plugs into the NJS to perform the checking.

In addition there are also the following pieces of documentation and related files:

· Installation and configuration guide – this document.

· BrokerPlugin_source.jar – contains the source code for the Pallas client plugin.

· BrokerPlugin_javadoc.jar – standard JavaDoc for the Pallas client plugin.

· UoMBroker_source.jar – contains the source code for the NJS component.

· UoMBroker_javadoc.jar – standard JavaDoc for the NJS component.

These components are all available from the project’s document store (EUROGRID BSCW), and should shortly be made available from the UNICORE forum’s web page, http://www.unicore.de/.
4 Installing and Configuring the Client Plugin
4.1 Prerequisites

AJO 4.0.0 build 3, or later
Client 4.1.5 or later
4.2 Installation

To install the client plugin, place the file BrokerPlugin.jar into the lib directory of your UNICORE installation. Alternatively, place that file into your users’ own plugins directory (the location varies according to where they have configured it to be, e.g. $HOME/plugins).
4.3 Configuration

The broker plugin can broker single Job Groups (ignoring sub-Job Groups). It can either broker the job at a list of pre-defined brokering Vsites, or it can broker at a single Vsite indicated by the user.

To broker at a single Vsite, select the brokering Vsite for the Job Group in the usual way. Next, press the broker icon, a question mark, which appears next to the Vsite panel. This option can also be accessed via the Broker sub-menu of the Extensions menu. Brokering at a single Vsite may result in a list of offers depending upon the configuration of that Vsite, and those Vsites it forwards the CheckQoS request on to.
To broker at the pre-defined list of Vsites, select this option from the Broker sub-menu of the Extensions menu. You should have already defined the list of sites by selecting the “Settings → Broker Defaults” option. This will bring up the dialog shown in Figure 1 below, which allows a list of brokering Vsites to be selected; the user can choose specific Vsites, or may select “all Vsites” of a particular Usite – the list of Vsites will be dynamically determined when brokering takes place. Brokering at a list of Vsites will send the CheckQoS to each of these sites, each of which may return a list of offers, as above for brokering at a single site. There may be overlaps in these lists, resulting in the user receiving multiple offers for a single site – see Caveat 2 below.
By default, the offers returned by the brokering Vsites are sorted by whether they are valid, their units of cost and their numeric cost. This groups invalid offers (such as advertisements) at the end of the returned list and then groups offers by cost so that adjacent offers are likely to be sensibly comparable. No attempt is made to fully compare offers made in different units; the broker does not understand conversion rates at this stage. The offer sorting rules may be configured, both in terms of which sorting rules are applied and the priority of each of the sorting rules relative to one another. This is done via the Offer Ordering tab of the Broker Defaults dialog, as shown in Figure 2 below.

When selecting either option, the plugin checks to see if the targeted site(s) are capable of brokering. The user will be informed if the chosen sites do not support this behaviour.
[image: image2.png]£ UNICORE: Broker Plugin Defaults

| Detaut Brokers | offer ordeiing. |

Use Add and Remove to adjust default site list

Usite

Manchester Compuling

Braker_EUROGRID.

Add..

Ok

Enter default values for UNICORE broker plugin

Figure 1: Broker Plugin Default Brokers Dialog (on Windows XP)

[image: image3.png]& UNICORE: Broker Plugin Defaults.

DefaultBrokers | ofer ordering |

Enabled ordering rules.
whether the offer is valid

the units that the cost is measured in
the numeric cost of the task

Disabled ardering rules
name of offering Vsite

address of offering Vsite's Usite.
‘soonest time task may start
latest time task may start
‘soonest time task may finish
latest time task may finish

Ok

Enter default values for UNICORE broker plugin

Figure 2: Broker Plugin Default Offer Ordering Dialog (on Windows XP)
4.4 The Brokering Process

Once brokering commences, the plugin sends out requests to each of the preset Vsites, or to just the targeted Vsite. All requests are sent simultaneously. A table is presented (see Figure 3 below) where the offers appear. A user, who may see a great offer, does not have to wait for all offers to come in. The status bar of the window indicates how many offer requests have still to complete – note that each offer request may yield zero, one or more actual offers.

[image: image4.png]£ offers from Broker

Please select a single offer, and click OK

Vsite handle Vsite adress

Start Time (range)

End Time (range)

Cost

IT3E_turing Manchester Compu,
02000_fermat Manchester Compu
0300_wren Manchester Compu
03000_green Manchester Compu

11:13 AM10 11:43 AV 11:29 AM 10 11:59 AM 0.00402955 CSAR
11:28 AM10 12:28 PM0.00847501 CSAR
11:18 AM10 11:18 AV 11:28 AM 10 11:38 AM 0.008258 CAR To.
11:18 AN o 11.58 AM/11.26 AM fo 12,08 PHI0 00870777 05AR

1118 AMI0 1218

1119 Al 10 11

Bramee | [_conce

All offers have arrived

Figure 3: Broker Offer Display Dialog (on Windows XP)
The table in the dialog displayed in Figure 3 shows a number of offers. Each offer contains a number of Tickets, each of which is valid for a certain length of time. The examine button can be used to look at the Resource Set contained in a particular offer – this is the resource set that will be used with the job, and may differ in a number of ways from the user’s originally specified resource set. Before accepting an offer, the user should examine the offer in this way. The new resource set will also contain the Ticket objects.

The line shown in Red in the diagram is an offer containing invalid Tickets. Invalid tickets may be returned from a site at which you cannot use, e.g. because you do not have an account, but which wants to advertise its services to you. By pressing “Examine”, you can read the message in the invalid Tickets, which might contain an e-mail address or URL where you can go to obtain an account. This is shown in Figure 4 below, for the invalid offer from the previous picture:
[image: image5.png]£ Tickets in detail

The tickets contain the followin

fTicket for Task Brokered_Script

[Ticket ID: org unicore Adldentifer@d20540c4

TICKET IS INVALID:

Could not map you to & user - please contact
Mike.Jones@man.ac.uk for an account
(after checking your projectilogin settings)

Resourceset
org.unicore.resources.Context: MakeRetumCodeDetision 0
org.unicore resourtes.QoSCheck QoSCheck (QuSCheck)

Figure 4: Ticket Detail Display Dialog for Invalid Ticket (on Windows XP)
4.4.1 Caveat 1 – Warnings when brokering jobs

As the user brokers a job, the Plugin checks the validity of the Job. This includes a check of the resource requirements of the job versus the selected Vsite for the job. When brokering jobs at a single brokering Vsite, this will be a check against the brokering Vsite. However, the resources published by that Vsite are the resources that the Vsite can execute itself (i.e. when a job is submitted to the Vsite for execution).

While it would be possible for an administrator to change the published resource set to be a superset of the resources of all sites brokered for, this is not practical (and there are also technical problems with the approach). In particular, if there are downstream brokers, there could be hundreds of machines being brokered for – so this solution is not scalable.

Therefore, users should read the messages given – if the messages given are all about unavailable resources, it is safe to proceed anyway. When an offer returned by the broker is selected, the resources will actually be satisfied at the target Vsite(s).

Similarly, the user will get warnings from Plugins, e.g. Gaussian, when constructing a job, if they have not selected a brokering Vsite which directly has a Gaussian installation. These errors should also be ignored as, again, when an offer returned by the broker is selected, all will be well.

This problem will be addressed in the future by better integration with the Pallas client.

4.4.2 Caveat 2 – Multiple Offers from the Same Site

When brokering jobs, it is sometimes possible to see multiple offers from the same site. These offers are currently typically identical, although they will always have arrived through different chains of brokering Vsites. When the offers are identical, this behaviour is annoying, but when expert brokering modules are being used the cost and turnaround times are potentially estimated from more abstract resource descriptions, and multiple offers may be made for a single Vsite with different processor and disk-space consumptions, and hence may return different costs and times for the same job at the same site. Future versions will allow the user to apply their own filtering rules, and so this behaviour will cease to be problematic.
4.5 Brokering Demonstrator Abstract DWDLM Jobs
At the EUROGRID Review meeting, I stated that it was possible to use the modified resource set mechanism to construct brokers which could take application-domain resource descriptions, and return concrete offers. I’ve included a demonstration of this in this release. The demonstration is accessed through two menu options available on the Broker Job Group submenu on the Extensions menu item.

Note that these menu options pick up some information from the current job in the Job Preparation Panel (such as the User), and also the target Broker for the “current Vsite” option. So before using these menu options, you should create a new job, and point it to the broker you want to send the jobs to. This will only work if the NJS component of the broker which the description is sent to can understand these jobs. This involves an extra configuration step, which is explained in Section 5.5. For those of you with accounts at Manchester, you can test this at “Broker_UoM”.

On selecting the menu items, a dialog appears as shown below in Figure 5. You can enter the parameters in the dialog. On pressing OK, you will be shown a summary of the information in a new window. As you can see, the only resource description being sent is a single Application resource, with an XML document in the meta-data field, which specifies the parameters. After this window is dismissed, the window closes and the brokering process commences in the same way as above. Concrete offers come back, based on a selection of processor counts for various machines, depending on the broker’s configuration. Although an offer can be selected, no action is taken after this point.
[image: image6.png]& DWD Test Job Specification

Type numerical integer values for the following:

Grid Points (X dim)

Grid Points (Y dim)

Grid Points (Z dim)
Simulation time (minutes)
Time Step (minutes)
Radiation Interval (minutes)

Figure 5: DWD Local Model Test Job Demonstrator Dialog
5 Installing and Configuring the NJS Component
5.1 Prerequisites

NJS 4.0.2 build 2, or later.
AJO 4.0.0 build 3 or later.
5.2 Installation

Place the file UoMBroker.jar in the CLASSPATH when starting the NJS. Put the following entry in the GENERAL section of the IDB:

BROKER org.uom.arcon.njs.broker.ResourceBroker [
 <broker configuration attributes>
 Configuration XML
 </broker>
]
The contents of the Configuration XML, which is contained between the square brackets, and the configuration attributes attached to the broker element, will now be described.

If you are setting up brokers that perform brokering for systems other than the Vsite hosting the broker, please read Section 5.3.1 carefully. Brokering between Vsites has specific security requirements as it requires a higher degree of delegation than is supported by default in the UNICORE security model.
5.3 Basic Configuration
A Brokering Vsite can be set up to broker for a number of different sites, including itself. To perform this minimal configuration, the following XML elements and attributes are used:

1. There must be a gateway attribute on the broker element that specifies the address of this Vsite’s Gateway, e.g.:

<broker gateway=”ssl://mds2.cfs.ac.uk:4433”> ...
2. Zero or more vsite elements as direct children of the broker element, one for each site to broker for, with the name of the Vsite in a name attribute and the gateway for the Vsite in a gateway attribute, e.g.:

<vsite name=”O300_wren” gateway=”ssl://mds2.cfs.ac.uk:4433”/>
Note that no offers can be obtained for sites that do not have the ResourceBroker loaded into the NJS.

When the gateway address is the same as the broker’s gateway address (as listed in the master broker element’s gateway attribute) it may be omitted.
3. The broker element may have a brokerSelf attribute. A Vsite will broker for itself unless the attribute has the value “no” like the following:

<broker gateway=”…” brokerSelf=”no”>
4. If the broker is to perform brokering of the local Vsite (as opposed to handing off requests to other brokers) it must have a local element as a child of the broker element. This has one attribute, class, which specifies what local resource checking module to use. At the time of writing, there is one such local resource checker (which must implement the org.uom.arcon.njs.broker.LocalResourceChecker interface) defined: org.uom.arcon.njs.broker.UnicoreResourceChecker.

The UnicoreResourceChecker module needs (up to) three local scripts to operate at this stage, which are run on the TSI machine by the Broker when constructing its estimates. Each script is specified by a child element of the local element which is set to the Path to the script. The scripts must be accessible by all users, as they will be run under the Xlogin of the user submitting the job (or the special Xlogin to use for composing advertisements, see below.) Currently, the following scripts may be specified:

a. turnaroundTimeScript – estimates turnaround time
b. cpuQuotaScript – checks CPU quotas for the user

c. diskQuotaScript – checks the disk quota for the user

Currently, turnaroundTimeScript is the only one used and checked for. If this script is not specified as a child of the local element, a Vsite cannot return offers for itself (this is checked at initialisation). Conversely, if not returning offers for itself, a Vsite does not need to specify the script. An example local-checker configuration is:

<local class=”org.uom.arcon.njs.broker.UnicoreResourceChecker”>
 <turnaroundTimeScript>
 /home/unicore/queuecheck
 </turnaroundTimeScript>
 </local>

An example of this script is given later in this document.
5.3.1 UUDB Configuration

For a broker to be able to get offers from another Vsite, it must be permitted to execute the above scripts on the target machines on behalf of the user brokering the job. This is unusual as it is not normally acceptable for NJSs to construct and consign jobs. However, this can be permitted in this limited case only. For an NJS to be able to do this at another NJS—required if the NJS hosting the main broker is to get offers from the other NJS’s broker—the certificate of the NJS hosting the consigning broker must appear in the UUDBs of all NJSs it is brokering for. The broker’s certificate must also appear in the broker’s own UUDB. No site needs to map the certificate for a brokering NJS to a real user account, and probably should not do so.
This is still the case when using the Jülich UUDB, as it is an extra step of trust, which is not and should not be permitted simply because of the presence of the unicoreNJS certificate extension. This also gives the administrator fine-grained control over who can broker offers for their machines, which is a good thing.
Where a group of Vsites share a UUDB and one of those Vsites hosts a broker that contacts the other Vsites to produce aggregate offers, it is sufficient for the NJS for that brokering Vsite to be placed in the UUDB with the role NJS.
5.4 Configuring Advertising

It is possible for a Vsite to advertise its services to users who do not have accounts on the machine by returning offers containing invalid Tickets containing an “advertisement”. It is also possible for a site to pass on brokering requests for users without accounts to its downstream Vsites without working on any local offers.
Advertising is controlled by the advertise element. Precise configuration is governed by a number of attributes, and the content of the element is a string to pass back in adverts. Two capabilities are provided:
1. To pass on requests from unknown users to downstream brokers, the passOnRequests attribute should be set to “true” (it defaults to false).
2. To make offers to unknown users, the useLocalXlogin attribute should be set to the username that should be used to execute the QoS gathering scripts under. When this is set, the content of the advertise element should be set to the advertisement text that you want to return.

These two capabilities can be used independently, or can be combined, e.g.

<advertise passOnRequests=”true” useLocalXlogin=”unicore”>
 Contact j.maclaren@man.ac.uk for accounts on this machine
</advertise>
5.5 Configuring Brokering of Application-Specific Jobs

For the broker to translate the application-domain resource requirements sent to it by the client, as illustrated in Section 4.5, the Broker needs an expert brokering module configured into it via the expert tag. The expert tag takes a single attribute, class, which specifies the name of a class (that implements the org.uom.arcon.njs.broker.ExpertBroker interface) that should be loaded to provide the implementation of the functionality. The contents of the element are used to configure the application-domain specific broker module.

The DWDLM test module (in the class org.uom.arcon.njs.broker.DWDLMExpert) requires following information:
1. Parameters for the weather model (which affect the performance information).

2. Extended information about the Vsites to get offers from. Specifically:
a. A list of processing element counts to give offers for (each is specified as a two-dimensional array, e.g. 4x4, 16x32, as needed by the estimation code);

b. The MFlops per processor for the machine;

c. The processors per node on the machine (so the broker knows how to specify the processing elements in terms of Nodes and Processors).

3. Performance model for the DWD LM Code to calculate the required resources.
Item 3 is actually coded up within the expert brokering plugin module. I note that it would be preferable to get 2.b and 2.c from the target machine’s IDB, and to use info about the size of the machine to automatically derive the pairs specified in 2.a; thus Item 2 could be entirely eliminated. This is not done at this stage, but is work for the future.
An example configuration would be the following:

 <expert class=”org.uom.arcon.njs.broker.DWDLMExpert”>
 <config gamma="1.3998" r="287.05" epsilon="0.1" nboundlines="2"/>
 <vsite name="O2000_fermat” gateway=”ssl://mds2.cfs.ac.uk:4433"
 procsPerNode="128" mflops="800"
 xyPairs="4x4 8x8 8x16"/>
 <!-- Note that the gateway defaults to that used by the main
 broker and so may be omitted in most cases. -->
 <vsite name="O3000_green”
 procsPerNode="512" mflops="800"
 xyPairs="8x8 16x16 16x32"/>
 <vsite name="O300_wren"
 procsPerNode="16" mflops="1000" xyPairs="2x2 4x4"/>
 <vsite name="T3E_turing"
 procsPerNode="1" mflops="1200"
 xyPairs="8x8 16x16 16x32"/>
 <vsite name="PS2_frik"
 procsPerNode="1" mflops="2400" xyPairs="1x1"/>
 </expert>

Default values exist for gamma, r, epsilon, and nboundlines which are used if these are not overridden here.

In addition, the dummy DWD application must be present at any sites which are to return offers. So in the IDBs at Manchester’s turing, fermat and wren, I’ve added the following lines to the appropriate IDB sections:

SOFTWARE_RESOURCE APPLICATION DWDLM 1.0
INVOCATION DWDLM-1.0 [/home/unicore/dwdlmtest]

This script in fact contains the following:
#!/bin/sh
echo "DWDLM_X set to "$DWDLM_X
echo "DWDLM_Y set to "$DWDLM_Y
echo "DWDLM_Z set to "$DWDLM_Z
echo "DWDLM_SIM_TIME set to "$DWDLM_SIM_TIME
echo "DWDLM_TIME_STEP set to "$DWDLM_TIME_STEP
echo "DWDLM_RADIATION_INTERVAL set to "$DWDLM_RADIATION_INTERVAL

The DWD LM dummy job created in the plugin will set these environment variables. It could be used in a fuller demonstration version to show that the job has the correct parameters. It should also print the UC_PROCESSORS, etc.

5.6 Checking the Configuration

Obviously, there’s quite a large configuration for the new Broker, and mistakes can be made. To see what’s going on in detail, switch the logging level of the NJS to D. You’ll get a very verbose output, stating clearly what’s going on, what parameters are being set to what values, etc.

5.7 Example TurnaroundTimeScript

For each ExecuteTask in the job being brokered, the Broker executes the turnaroundTimeScript on behalf of the user with four parameters that correspond to:

1. The number of nodes to run on

2. The number of processors per node

3. The amount of memory in MB

4. The total requested time for the job in seconds, i.e. Wall-clock Sec * Nodes * ProcsPerNode

This script must output a single line containing six space-separated fields:

1. Minimum time until the job starts (in seconds)

2. Maximum time until the job starts

3. Minimum time until the job ends

4. Maximum time until the job ends

5. Estimated cost

6. Units of the cost (any underscores in the units are replaced with spaces in the client plugin)

It is up to administrators to do any estimation based on the contents of their batch queues – this interface simply makes it possible. I have also supplied, as an example, the turnaround time script which is used at Manchester at the moment:

#!/bin/sh

command=`basename $0`

if test "$#" != 4; then

 echo "Syntax: $command <Nodes> <ProcsPerNode> <Mb per Node> <Wall Time>" >&2

 exit 1

fi

NODES=$1

PPN=$2

MEM=$3

TOTAL_TIME=$4

machine=`uname -n`

WALL=`expr $TOTAL_TIME / $NODES / $PPN`

UNITS="CSAR_Tokens"

MIN_DELAY=0

MAX_DELAY=0

SLOWDOWN=1

case $machine in

 wren) RATE=72648 ; SLOWDOWN=2 ;;

 fermat) RATE=92664 ; MAX_DELAY=3600 ;;

 green) RATE=68904 ; MAX_DELAY=2400 ;;

 turing) RATE=148896 ; MAX_DELAY=1800 ;;

 frik) RATE=0; COST="1"; UNITS="Pint_of_Real_Ale" ;;

 *) echo "$command: Unknown machine: $machine !!" >&2

 exit 2

 ;;

esac

if test "$RATE" != 0; then

 COST=`echo $TOTAL_TIME | awk '{ print $1 /'$RATE';}'`

fi

MIN_END=`expr $MIN_DELAY + $WALL`

MAX_TIME=`expr $WALL * $SLOWDOWN`

MAX_END=`expr $MAX_DELAY + $MAX_TIME`

echo $MIN_DELAY $MAX_DELAY $MIN_END $MAX_END $COST $UNITS

It’s not very sophisticated, and does not really react to the queue lengths, as we have found no good way to estimate this information yet. The initial delays are always given as best case – start now, with the worst case being fabricated for each machine. After starting the jobs are assumed to run un-hindered. The odd-one-out is wren, which has an interactive TSI and so always starts straight away, but where the jobs can take longer to run due to interference from other interactive jobs.

I would like to point out that the job cost and units are correct, so the user at least gets back some useful information.
5.8 Example BROKER IDB Sections

To enable the production of Quality-of-Service information for an NJS’s Vsite for just known users (i.e. to act as a leaf in a tree of brokers), use a BROKER section like this:

BROKER org.uom.arcon.njs.broker.ResourceBroker [
 <broker name=”vsite_name” gateway=”ssl://host.some.where:4433”>
 <local class=”org.uom.arcon.njs.broker.UnicoreResourceChecker”>
 <turnaroundTimeScript>
 /home/unicore/queuecheck
 </turnaroundTimeScript>
 </local>
 </broker>
]

Note that if you want to make offers via other brokering NJSes, you also have to add the certificates for those NJSes to the leaf NJS’s UUDB.
To allow a brokering NJS to contact other NJSes and aggregate offers without doing any brokering of its own resources (e.g. because it is acting as a broker-only NJS), use a BROKER section like this:

BROKER org.uom.arcon.njs.broker.ResourceBroker [
 <broker name=”vsite_name” gateway=”ssl://host.some.where:4433”
 brokerSelf=”no”>
 <vsite name=”other_vsite_1”/>
 <vsite name=”other_vsite_2”/>
 </broker>
]
Note that this brokering NJS will only accept requests consigned by agents (users or NJSes) that it recognises.

To allow a leaf broker (i.e. brokering NJS that does not contact other brokers) to make offers to users that it does not recognize (whether adverts or instructions to them to remember to specify their account properly), add an advertising sub-section to get a BROKER section like this:

BROKER org.uom.arcon.njs.broker.ResourceBroker [
 <broker name=”vsite_name” gateway=”ssl://host.some.where:4433”>
 <advertise useLocalXlogin=”unicore”>
 Your account isn’t recognised but here is the offer that
 you might have got otherwise...
 </advertise>
 <local class=”org.uom.arcon.njs.broker.UnicoreResourceChecker”>
 <turnaroundTimeScript>
 /home/unicore/queuecheck
 </turnaroundTimeScript>
 </local>
 </broker>
]

To allow a non-leaf broker to pass on requests from users that it does not recognise to its sub-brokers, add an advertising sub-section to get a BROKER section like this:

BROKER org.uom.arcon.njs.broker.ResourceBroker [
 <broker name=”vsite_name” gateway=”ssl://host.some.where:4433”
 brokerSelf=”no”>
 <advertise passOnRequests=”true”/>
 <vsite name=”other_vsite_1”/>
 <vsite name=”other_vsite_2”/>
 </broker>
]
Note that a brokering NJS can pass on requests to others and broker for its own Vsite by simple combination of all the above features into a single BROKER section, like this:

BROKER org.uom.arcon.njs.broker.ResourceBroker [
 <broker name=”vsite_name” gateway=”ssl://host.some.where:4433”>
 <advertise useLocalXlogin=”unicore” passOnRequests=”true”>
 Your account isn’t recognised but here is the offer that
 you might have got otherwise...
 </advertise>
 <local class=”org.uom.arcon.njs.broker.UnicoreResourceChecker”>
 <turnaroundTimeScript>
 /home/unicore/queuecheck
 </turnaroundTimeScript>
 </local>
 <vsite name=”other_vsite_1”/>
 <vsite name=”other_vsite_2”/>
 </broker>
]

The order of the advertise, local and vsite elements does not matter.
6 Future Directions

There are a number of interesting routes for future development open to us at this stage. I list some of them below:
6.1 Extended Expert Brokering

One of the features currently in the broker, though only partially so far, is support for expert brokering modules which perform application-specific brokering. Further work will be ongoing to make more expert modules than the DWD Local Model prototype that currently exists, with the collaboration with the work ongoing in WP1 being a particular focus. By doing this we hope to evaluate whether the current interface between the generic broker engine and the expert modules is sufficient, and also produce a guide for future authors of such modules to allow for easier implementation of such code by other groups.
6.2 Resource Consumption Feedback

One of the most interesting ideas that we have had is for there to be a way for information about what resources were actually consumed to be fed back to a broker. This would allow brokers to take on additional rôles such as providing Usite-wide or virtual-organisation-wide logging of application use. Another potential use for the information would be to allow expert brokering modules to refine their future offers based on the experience of how the site actually performed on real data, instead of relying on crude machine models.

This work requires additional work to add new broker-to-broker messages and a new API within the NJS to allow the local brokering module to discover what the actual resource consumption was. There are also several security issues due to the fact that the messages between brokers will be sent at a new time (not at brokering time but sometime after the job finishes), the fact that this will mean that there are far more communicating agents in the system and hence many more potential security failure points, and the concern that sites might not want up-stream brokers hosted by other organisations to know fine details of execution time (so requiring some kind of policy, possibly fairly fine-grained, to control what information is passed on.) There are also scalability concerns due to all the additional information being passed about, though these are possibly resolvable if the feedback information is sent to up-stream brokers in batches.
6.3 Self-Configuring Brokers

It is currently necessary to explicitly list all Vsites being brokered for by a broker, which is not something that is likely to scale well in administration terms. Instead, it would be better if a broker could be told to discover for itself the sites it can broker for by asking the gateways of its configured Usites. In the expert-brokering domain, it should be possible to extend this further by providing a convenient architecture for expert modules to do resource discovery of the remote brokers. This would go a long way towards making it far easier for application developers to provide their own expert brokering support without having to understand the details of the brokering process itself.

6.4 Brokering of Jobs Containing Multiple Tasks

At the moment, the broker is only known to correctly handle jobs containing single execute tasks within them. While it is probably fairly easy to extend this to handle multiple independent tasks, it is far more difficult to handle dependent or coupled tasks, both of which also require scheduling support. There is also the question of how to handle conditional and looping structures containing brokered tasks.
6.5 Automated Offer Selection

Having a way for a broker to select offers from Vsites automatically based on some user-specified criteria is an obvious extension. At the moment, the leading scheme for handling this sort of task is based on the ClassAds work of the Condor project at the University of Wisconsin. Producing a version of that adapted to offer selection would tremendously increase the power of the brokering engine, and make possible advanced things like automated submission of brokered jobs. This in turn would enable uses like the execution of tasks in a loop, where the system that executes the task each time round the loop is chosen dynamically. Obviously this advanced usage would have many implications for the UNICORE model; at this stage, we know it impacts on both security aspects (as it is a deeper form of delegation) and on client-integration aspects (required for results fetching at the very least).
6.6 Brokering and Service Level Agreements
One of the more interesting recent developments from the rest of the resource management community is the Service Level Agreement (SLA). This is a more complex description of a resource booking/reservation, and would allow brokers to make offers that were either more likely to be met, or at least with a defined level of compensation in the case that the offered resources and quality-of-service were not actually available. Integration of the Broker with this functionality is an obviously desirable goal.
6.7 Brokering with Distributed Data and Network Transfers
Once it is possible to broker jobs containing multiple tasks, it becomes necessary to consider how to ensure that the tasks communicate with one another. Where the tasks are obtaining data from some kind of shared distributed pool (which is common with High-Energy Physics experiments) it is necessary to consider the cost of providing the data to the computational task (e.g. by trying to locate the task closer to one of the replicated data repositories). Many computational tasks also produce large amounts of output data, and the cost of transferring them on (whether for long-term storage or to another tasks) may be considerable itself, and where it is possible to obtain quality-of-service guarantees for network bandwidth (e.g. by reserving a fixed proportion of optical fibre capacity between the end-points of the transfer), the broker should offer this as an option.

